Research Topic

Effects of Vegetation on Stream Systems

Weiming Wu, PhD Professor Dept. of Civil and Environmental Eng. Clarkson University Potsdam, NY 13699, USA

Examples of Aquatic Vegetation

Floodplain forest. http://www.nature.org Clarkson

UNIVERSITY

defy convention.

Model of Wu and Wang (2004) and Wu et al. (2005)

2-D Depth-av. Flow Eqn. with Vegetation Effects

$$\frac{\partial [\rho(1-c)h]}{\partial t} + \frac{\partial [\rho(1-c)Uh]}{\partial x} + \frac{\partial [\rho(1-c)Vh]}{\partial y} = 0$$

$$\frac{\partial [\rho(1-c)Uh]}{\partial t} + \frac{\partial [\rho(1-c)UUh]}{\partial x} + \frac{\partial [\rho(1-c)UVh]}{\partial y}$$

$$= -\rho g(1-c)h\frac{\partial z_s}{\partial x} + \frac{\partial (hT_{xx})}{\partial x} + \frac{\partial (hT_{xy})}{\partial y} - \tau_{bx} - f_{dx}h$$

$$\frac{\partial [\rho(1-c)Vh]}{\partial t} + \frac{\partial [\rho(1-c)UVh]}{\partial x} + \frac{\partial [\rho(1-c)VVh]}{\partial y}$$
$$= -\rho g(1-c)h\frac{\partial z_s}{\partial y} + \frac{\partial (hT_{yx})}{\partial x} + \frac{\partial (hT_{yy})}{\partial y} - \tau_{by} - f_{dy}h$$

(*c* = vegetation density)

Modeling of Vegetation Effects

Drag and inertia forces:

$$\vec{F} = \frac{1}{2} C_D \rho N_v A_v \left| U_v \right| \vec{U}_v + \rho C_M N_v V_v \frac{\partial \vec{U}_v}{\partial t}$$

For submerged vegetation (Stone and Shen 2002):

$$\vec{U}_{v} = \eta_{v} \vec{U} \left(\frac{h_{v}}{h}\right)^{1/2}$$

 h_v = vegetation height, and η_v = coefficient close to 1.0

K and *E* Equations

$$\frac{\partial k}{\partial t} + U \frac{\partial k}{\partial x} + V \frac{\partial k}{\partial y} = \frac{\partial}{\partial x} \left(\frac{v_t}{\sigma_k} \frac{\partial k}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{v_t}{\sigma_k} \frac{\partial k}{\partial y} \right) + P_h + P_{kb} + P_v - \varepsilon$$

$$\frac{\partial \varepsilon}{\partial t} + U \frac{\partial \varepsilon}{\partial x} + V \frac{\partial \varepsilon}{\partial y} = \frac{\partial}{\partial x} \left(\frac{v_t}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{v_t}{\sigma_{\varepsilon}} \frac{\partial \varepsilon}{\partial y} \right) + c_{\varepsilon 1} \frac{\varepsilon}{k} \left(P_h + c_{\varepsilon 3} P_v \right) + P_{\varepsilon b} - c_{\varepsilon 2} \frac{\varepsilon^2}{k}$$

New Source Term

$$P_{v} = \frac{c_{vk}}{\rho(1-c)} \left(f_{dx}U + f_{dy}V \right)$$

Suspended-Load Transport

$$\frac{\partial [(1-c)hS_k]}{\partial t} + \frac{\partial [(1-c)UhS_k]}{\partial x} + \frac{\partial [(1-c)VhS_k]}{\partial y}$$
$$= \frac{\partial}{\partial x} \left\{ \varepsilon_s h \frac{\partial [(1-c)S_k]}{\partial x} \right\} + \frac{\partial}{\partial y} \left\{ \varepsilon_s h \frac{\partial [(1-c)S_k]}{\partial y} \right\} + \alpha \omega_{sk} (1-c)(S_{*k} - S_k)$$

Bed-Load Transport

$$\frac{\partial [(1-c)\partial \overline{s}_{bk}]}{\partial t} + \frac{\partial [\alpha_{bx}(1-c)q_{bk}]}{\partial x} + \frac{\partial [\alpha_{by}(1-c)q_{bk}]}{\partial y} + \frac{1}{L}(1-c)(q_{bk}-q_{b*k}) = 0$$

Bed Change

$$(1-p')\frac{\partial z_{bk}}{\partial t} = \alpha \omega_{sk} (S_k - S_{*k}) + \frac{1}{L} (q_{bk} - q_{b*k})$$

Sketch of the flume with the simulated vegetation zones (Bennett et al., 1999)

and computational mesh near vegetation zones

Plan view of the flume with vegetation areas

Wavelength = 4.8 m

w = 0.6 m

Clarkson

defy convention.

Close-up schematic of dowel configuration

Clarkson

defy convention.

Discharge (Q)	0.0043 m3/s
Depth (d)	27 mm
Width (w)	0.6 m
Froude Number (Fr)	0.47
Vegetation Density	10% - 0.04%

Streamlines

Vegetation Concentration: 0.04%

Streamlines (Vegetation Concentration c= 10%)

Experiment

Clarkson

defy convention.

UNIVERSI

Velocity Comparison (c=10%)

Clarkson

Velocity Comparison (c=2.5%)

Clarkson

Velocity Comparison (c=0.6%)

Clarkson

Prof.

Velocity Comparison (c=0.2%)

Clarkson

Vegetation Zones with Various Wavelength

Clarkson

IVERSI

Large Woody Structures

A Deeply-incised Sharp Bend in Little Topashaw Creek within Yalobusha Watershed in North Central Mississippi. Installed large woody debris structures are marked in red lines.

Large Woody Debris Structures

Inflow Hydrograph (July 2000-June 2001)

Clarkson

dely convention.

Bed Material

Simulated Flows in Little Topashaw Creek

(a) without and (b) with Large Woody Structures

Simulated Bed Change after 1 Year

Flow Velocity at Cross Section LTH2

Clarkson

dely convention

Bed Changes after 1 Year in Cross Section LTH2

Clarkson

defy convention

Fish Species Considered

Blacktail Shiner (*Cyprinella venusta*)

It is usually most abundant in areas with swift current and riffles with silt, gravel, and bedrock substrates.

Largemouth Bass (Micropterus salmoides)

It is a top predator in the studied aquatic ecosystem

Weighted Usable Area

$$WUA = \sum_{i}^{M} CSI_{i} \cdot \Delta A_{i}$$

Overall Suitability Index

$$OSI = \sum_{i}^{M} CSI_{i} \cdot \Delta A_{i} / \sum_{i}^{M} \Delta A_{i}$$

 CSI_i = Combined suitability index ΔA_i = Area of each wetted cell

Combined Habitat Suitability Index

HSI Evaluation

The maximum increase of WUA for Blacktail Shiner was 22%, while the maximum increase for Largemouth Bass was 155%.

Comparison with Observations

		Blacktail Shiner		Largemouth Bass	
Discharge (m ³ /s)		Weight Usable Area (m ²)		Weight Usable Area (m ²)	
		Without	With	Without	With
		LWS	LWS	LWS	LWS
High	15.5	300.42	341.66	90.85	164.12
Medium	5.0	150.71	184.88	44.53	113.97
Low	1.5	112.97	138.35	47.26	116.15

Table 4 Summary of electrofishing catch (mean values) before and after LWS construction (Shields et al., 2006)

Ouentitu	Upstream	Treated reach	Downstream
Quantity	Before/After	Before/After	Before/After
Total no. of fish species	13/22	19/25	17/27
Fish catch biomass, g/150 m	262/337	150/407	168/397
Mean no. of fish per sample	74/143	129/177	141/186
Mean no. of species per sample	6.8/11.4	6.8/12.8	6.3/13.1
No. of Blacktail Shiner (Cyprinella venusta)	64/230	368/778	410/753
No. of Largemouth Bass (Micropterus salmoides)	0/7	0/9	3/3
Length of largest individual in each sample, cm	13/16	9/14	10/12

✓ The number of Blacktail Shiners doubled in the treated reach.
 ✓ Largemouth Bass were captured in the treated reach following LWS construction but not before.

Model of Wu and Marsooli (2012) and Wu (2013)

$$\frac{\rho h}{\partial t} + \frac{\partial (\rho h u)}{\partial x} + \frac{\partial (\rho h v)}{\partial y} + \rho_b \frac{\partial z_b}{\partial t} = \left(\rho_s - \rho_w\right) \left[\frac{\partial}{\partial x} \left(\varepsilon_s h \frac{\partial C_t}{\partial x}\right) + \frac{\partial}{\partial y} \left(\varepsilon_s h \frac{\partial C_t}{\partial y}\right) \right]$$
$$\frac{\partial}{\partial t} (\rho u h) + \frac{\partial}{\partial x} \left(\rho u^2 h\right) + \frac{\partial}{\partial y} (\rho u v h)$$
$$= \frac{\partial}{\partial x} \left(\mu_t h \frac{\partial u}{\partial x}\right) + \frac{\partial}{\partial y} \left(\mu_t h \frac{\partial u}{\partial y}\right) - F_x - \rho g h \frac{\partial z_s}{\partial x} - \frac{1}{2} g h^2 \frac{\partial \rho}{\partial x} - \rho g \frac{n^2 m_b U u}{h^{1/3}}$$

$$\frac{\partial}{\partial t}(\rho vh) + \frac{\partial}{\partial x}(\rho uvh) + \frac{\partial}{\partial y}(\rho v^{2}h)$$
$$= \frac{\partial}{\partial x}\left(\mu_{t}h\frac{\partial v}{\partial x}\right) + \frac{\partial}{\partial y}\left(\mu_{t}h\frac{\partial v}{\partial y}\right) - F_{y} - \rho gh\frac{\partial z_{s}}{\partial y} - \frac{1}{2}gh^{2}\frac{\partial \rho}{\partial y} - \rho g\frac{n^{2}m_{b}Uv}{h^{1/3}}$$

 ∂

Clarkson

defy convention-

UNIVE

Sediment Transport

$$\frac{\partial (hC_t)}{\partial t} + \frac{\partial (huC_t)}{\partial x} + \frac{\partial (hvC_t)}{\partial y} = \frac{\partial}{\partial x} \left(\varepsilon_s h \frac{\partial C_t}{\partial x} \right) + \frac{\partial}{\partial y} \left(\varepsilon_s h \frac{\partial C_t}{\partial y} \right) - \frac{1}{L} \left(UhC_t - m_b q_{t*} \right)$$

Bed Change

$$(1 - p'_{m})\frac{\partial z_{b}}{\partial t} = \frac{1}{L}\left(\overline{U}hC_{t} - m_{b}q_{t*}\right)$$
$$+ \frac{\partial}{\partial x}\left[D_{s}\overline{U}hr_{b}C_{t}\frac{\partial z_{b}}{\partial x}\right] + \frac{\partial}{\partial y}\left[D_{s}\overline{U}hr_{b}C_{t}\frac{\partial z_{b}}{\partial y}\right]$$

Sediment Transport Capacity q_{t*}

by Wu et al. (2000) Formula

Eddy viscosity:

$$\mathbf{v}_{t} = \sqrt{\left(\alpha_{0}U_{*}h\right)^{2} + \left(l_{h}^{2}\left|\overline{S}\right|\right)^{2}}$$

Sediment adaptation length:

$$L = \max\left\{L_b, \frac{\bar{U}h}{\alpha\omega_s}\right\}$$

Finite volume method

Explicit algorithm – Euler scheme in time

HLL Riemann Solver for streamwise intercell fluxes and HLPA scheme for lateral fluxes

MUSCL piecewise linear reconstruction for second-order accuracy in space

Finite-Volume Discretization

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng.

Bed Changes around Vegetated Island

Plan view of Tsujimoto's (1998) experiments

Clarkson

defy convention

Simulation Results (Wu, 2013)

Clarkson

Bed changes around vegetated island: (a) Measured by Tsujimoto (1998); (b) Calculated by Wu and Wang (2004); and (c) calculated by Wu (2013) (contour unit: cm).

Bed Change around Alternate Veg. Bars

Setup of experiments of Bennett and Alonso (2003)

Mesh and sketch of the experiments of Bennett and Alonso (2003)

Calculated vs. Measured Bed Changes

Clarkson

Dam-Break Flow over Vegetated Channel

Prof. Dr. Weiming Wu, Dept. of Civil and Environmental Eng.

Publications Related

W. Wu and S. S.Y. Wang (2004). "Depth-averaged numerical modeling of flow and sediment transport in open channels with vegetation," Riparian Vegetation and Fluvial Geomorphology, edited by S. J. Bennett and A. Simon, AGU, pp. 253–265.

W. Wu, F. D. Shields, Jr., S. J. Bennett, and S. S.Y. Wang (2005). "A depth-averaged 2-D model for flow, sediment transport and bed topography in curved channels with riparian vegetation," Water Resources Research, AGU, 41(W03015), p. 15.

W. Wu (2007), Computational River Dynamics, Taylor & Francis, UK, 494 p.

S. J. Bennett, W. Wu, C. V. Alonso, and S. S. Y. Wang (2008). "Modeling fluvial response to instream woody vegetation: implications for stream corridor restoration," Earth Surface Processes and Landforms, 33(6), 890–909.

Z. He, W. Wu, and F. D. Shields, Jr. (2009). "Numerical analysis of effects of large wood structures on channel morphology and fish habitat suitability in a southern U.S. sandy creek," J. Ecohydrology, Wiley-Blackwell, 2, pp. 370–380, August.

W. Wu and Z. He (2009). "Effects of vegetation on flow conveyance and sediment transport capacity," Int. J. Sediment Research, 24(3), 247–259.

W. Wu and R. Marsooli (2012). "A depth-averaged 2-D shallow water model for breaking and nonbreaking long waves affected by rigid vegetation." Journal of Hydraulic Research, IAHR, 50(6), 558– 575.

W. Wu (2013). "An explicit finite-volume depth-averaged 2-D model of morphodynamic processes near marsh edges and vegetation patches." Proc. 12th International Symposium on River Sedimentation, Kyoto, Japan, Sept. 1-5.